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of the Darwin and direct implicit methods. The Darwin
method is a reduction of Maxwell’s equations to a radiationWe investigate the linear dispersion and other properties of the

Darwin Direct Implicit Particle-in-cell (DADIPIC) method in order to free limit thus removing the light propagation Courant
deduce guidelines for its use in the simulation of long time-scale, condition. The direct implicit method works with the finite
kinetic phenomena in plasmas. The Darwin part of this algorithm difference equations in an implicit form and is used to
eliminates the Courant constraint for light propagation across a grid

solve for a time-advanced electrostatic field. In this waycell in a time step and divides the field solution into several elliptic
the unresolved plasma oscillations are numerically dampedequations. The direct implicit method is only applied to the electro-

static field relieving the need to resolve plasma oscillations. Linear out and are no longer a source of instability.
theory and simulations verifying the theory are used to generate DADIPIC is characterized in this paper by answering
the desired guidelines as well as show the utility of DADIPIC for a the following questions. Are spatially and temporally re-
wide range of low frequency, electromagnetic phenomena. We find

solved plasma phenomena simulated accurately? What isthat separation of the fields has made the task of predicting algo-
the response of the method when the above Courant andrithm behavior easier and produced a robust method without restric-

tive constraints. Q 1997 Academic Press plasma frequency conditions are not met? Are there nu-
merical constraints on the algorithm as presently imple-
mented? What improvements can be made to the method?

I. INTRODUCTION We believe that the answers to these questions show
DADIPIC to be a robust algorithm for the simulation

In a previous paper [1] we introduced the Darwin direct of low frequency phenomena in unbounded or bounded
implicit particle-in-cell (DADIPIC) method which elimi- plasmas. An overview of the DADIPIC method is pre-
nates the constraints cDx/Dt , 1 and gpeDt , 2 on electro- sented in Section II. Section III has guidelines for the
dynamic PIC simulation. In that paper we discussed the application of DADIPIC based on theory for its expected
details of the numerical implementation of field solutions operation. Section IV shows the actual performance of the
and particle advances including boundary conditions. Here method in 2D as Dx and Dt are varied both as verification
we present the performance of DADIPIC and guidelines of theory and proof of robustness under stressful circum-
for its application to low frequency, kinetic plasma phe- stances. In Section V the guidelines found in Sections III
nomena. The foundation of DADIPIC is the combination and IV are condensed into a region of operation for stable

and accurate DADIPIC simulation.
1 This document was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States II. IMPLEMENTATION OF DARWIN DIRECT IMPLICIT
Government nor the University of California nor any of their employees, PARTICLE-IN-CELL
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any

Our implementation of DADIPIC results in an algo-information, apparatus, product, or process disclosed, or represents that
rithm in which the implicit electrostatic field and the Dar-its use would not infringe privately owned rights. Reference herein to

any specific commercial products, process, or service by trade name, win magnetoinductive fields are found separately. We will
trademark, manufacturer, or otherwise, does not necessarily constitute describe the calculation of the fields and then present the
or imply its endorsement, recommendation, or favoring by the United algorithm which combines Darwin fields with the implicit
States Government or the University of California. The views and opin-

particle advance.ions of authors expressed herein do not necessarily state or reflect those
of the United States Government or the University of California and
shall not be used for advertising or product endorsement purposes. The A. Implicit Electrostatic Method
U.S. Government’s right to retain a nonexclusive royalty-free license in

Implicit methods achieve stability by including informa-and to the copyright covering this paper, for governmental purposes,
is acknowledged. tion from the next time step in the equations for the time
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advance of present quantities. An overview of the Direct differencing [3] can be written in terms of the time ad-
vanced electrostatic field,Implicit method including electromagnetics and energy

conservation characteristics can be found in Langdon and
rn11 5 r̃ 2 = ? (X ? En11

irr )
(2.5)

Barnes [2]. In this algorithm the particles are time inte-
grated according to the D1 implicit scheme [3] which causes
large damping of high frequency oscillations while re- X 5

Dt2

4 O
s

(I 1 Rn) Fqsr̃s

ms
G ,

taining low frequency phenomena. The finite differenced
equations take the form

where the sum is over species of particles. The X tensor
is formed from the B-field and charge density already

vn11/2 5 Rn ? vn21/2 1
Dt
2m

(I 1 Rn) ?Sq
m

En
sol 1 anD stored on the grid. This differencing provides a significant

reduction in computation since it avoids extra interpolation
of particle quantities to the grid and leads to a simpler finitexn11 5 xn 1 Dtvn11/2 (2.1)
difference field solution. With the simplified differencing
expression for rn11 the field equation becomesan 5

1
2 Fan21 1

q
m

En11
irr G ,

= ? [(I 1 4fX)=fn11] 5 4fr̃. (2.6)
where Esol is the solenoidal part of the field, and Eirr is the

In 2D this equation has a nine-point template of coeffi-irrotational part of the field. In Eq. (2.1) I is the identity
cients in the solution matrix for each potential node totensor and R, the rotation due to v 3 B, is given by
be solved.

Rn 5 [(1 2 (Un)2)I 2 2Qn 3 I 1 2QnQn]/(1 1 (Un)2)
(2.2)

B. Darwin Method
Qn 5 qBnDt/2mc. The Darwin limit is the minimum reduction in Maxwell’s

equations necessary to eliminate the propagation of light
Notice that a carries only the time advanced electrostatic waves [6]. An overview of the Darwin method can be found
field. Unlike other electromagnetic implicit algorithms, the in Nielson and Lewis [7]. The method eliminates the CFL
particle push is still explicit with respect to Esol and B. So constraint on light propagation while retaining all kinetic
a time advanced field solve must only be found for Eirr . effects for the particles in the radiation free fields. The
This particle push is broken up into two steps [5]. The first Darwin field equations also reduce the size of electromag-
push uses only known quantities to advance v and x to netic fluctuations compared to fully electromagnetic codes
a p level, and the p quantities are used to estimate the [7] allowing the use of fewer particles.
advanced Eirr . The predicted Eirr is then used to complete The essence of this radiation free limit is obtained by
the advance to the n 1 1 time step. ignoring the solenoidal part of the displacement current

Using the notation of Eq. (2.1), the intermediate quanti- in Ampere’s law. Maxwell’s equations can then be re-
ties for each particle are formulated into the following set of elliptic equations

where the time advance is carried solely by the particle
quantities [1, 7]. For the electrostatic potential Poisson’sṽ 5 Rn ? vn21/2 1

Dt
2

(I 1 Rn) ?Sq
m

En
sol 1

1
2

an21D
(2.3)

equation in the modified form of Eq. (2.6) is used to allow
an implicit particle advance with respect to the electorstatic

x̃ 5 xn 1 Dtṽ. field. In a 2D code two forms are used to solve for the B-
field in order to ensure that = ? B 5 0 and = ? A 5 0. The

The final positions and velocities are obtained from component of B which is out of the simulation plane is
given by

vn11/2 5 ṽ 1 dv

=2By 5 2
4f
c

(= 3 J)y . (2.7)xn11 5 x̃ 1 Dtdv (2.4)

The second equation is obtained by replacing B with itsdv(xn, xn11) 5
qDt
4m

(I 1 Rn)En11
irr (xn11).

vector potential form

With this scheme dv cannot be found until the advanced
=2Ay 5 2

4f
c

Jsol,y . (2.8)Eirr is estimated. An approximate field equation is obtained
by taking a Taylor expansion of the accumulated charge
density at time n 1 1 about x̃. The result using simplified Finally, the combination of the two curl equations gives
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dictor term to only be accurate for R and E which have
=2Esol 5

4f
c2 J̇sol . (2.9) scale lengths long compared to Dtdv. Since the gridding

limits the variation of these quantities, the constraint of
Eq. (3.1) should be sufficient. For higher order shape func-The streamlined Darwin field (SDF) formulation is used to
tions the other terms in the expansion have been neglected,avoid both boundary condition and vector decomposition
but again constraint (3.1) would cause these terms to beproblems in solving Eq. (2.9) [1, 8].
small. Under conditions where Eq. (3.1) is a valid expan-
sion, we can expect an accurate solution from the electro-C. Combined Algorithm
static field equation with strict differencing. The minimum

As explained in Gibbons and Hewett [1], the field solu- density fluctuation scale lengths for which the simplified
tions of Sections II.A and II.B are integrated into a com- differencing of Eq. (2.5) agrees with strict differencing are
bined algorithm for the time advance of particle and field found to be on the order of a few grid cells [4].
quantities. Given initial values of En

j , Bn
j , xn

i , vn21/2
i , and An estimate of the time step needed to resolve a phe-

an21
i with j designating grid quantities and i particle quanti- nomena with frequency go can be found from a von Neu-

ties, the procedure is as follows: mann stability analysis of the time-advance difference
equations, assuming a time harmonic oscillation of onlyI. Advance to p level.
the electrostatic field [9]. This results in a dispersion rela-(1) Interpolate En

sol, j and Bn
j to the particles.

tion for the normal modes at g dependent on the driven(2) Push particles to ṽi and x̃i using Eqs. (2.3).
frequency go . For the D1 implicit scheme the dispersion(3) Interpolate the ṽi and x̃i to the grid to get r̃j

relation is [3]and Xj .
(4) Solve the implicit electrostatic field Eq. (2.6) to

(goDt)2z3 1 (2z 2 1)(z 2 12) 5 0, (3.2)find En11
irr, j .

II. Advance to n 1 1 level.
where z 5 exp(2igt). izi for the least damped simple-(1a) Interpolate En11

irr, j , and Bn
j to the particles.

harmonic oscillator mode shows large damping for large(2a) Push particles to vn11/2
i and xn11

i using Eqs. (2.4),
goDt; however, the damping is quite small for (goDt)2 lessevaluate dv at x̃i , and save an

i .
than .05. Thus the constraints for resolving electrostatic(1b) Interpolate En11

irr, j , En
sol, j , and Bn

j to the particles.
phenomena are Eq. (3.1) and(2b) Find vn11

i from

kDx # 1, goDt # .2 (3.3)
vn11

i 5 Rn ? vn11/2
i 1

qDt
4m

(I 1 Rn) ? (En11
irr 1 En

sol). (2.10)
B. Effect of the B-Field on the Implicit Electrostatic

Field Equation Matrix
(3) Interpolate the vn11

i and xn11
i to the grid to get

Because of the explicit advance with respect to the B-Jn11
j , rn11

j , and Kn11
j .

field, certain constraints on the time step occur in relation(4) Solve the B-field and SDF Eqs. (2.7), (2.8), and
to the electron gyrofrequency, gce . We must consider the(2.9) to find Bn11

j and En11
sol, j .

implicit electrostatic field equation since the rotation ten-
sor depends on the B-field. A condition to ensure a nonsin-III. THEORY OF DADIPIC OPERATION
gular implicit field solution matrix is found from the theo-
rem [10]:A. Effect of the Direct Implicit Method

Let M and C be n 3 m matrices with M being
Several sources discuss the effect of finite spatial and nonsingular and let i?i denote any of the operator norms.

temporal discretization on the direct method [2–4]. This If a 5 iM21Ci , 1 (or a 5 iCM21i , 1) then M 1 C
section is a summary of the constraints to be met for accu- is nonsingular.
rate solution of the field equation. The field matrix can be analyzed to find the constraint

First we must consider whether Eq. (2.5) is a reasonable on Dt necessary for this condition to be met. In order
approximation of rn11. For a linear shape function it is to simplify the analysis without significant effects on the
exact as long as the particle remains within the cell in constraint, consider a uninform plasma with doubly peri-
which it started or odic boundaries and with Bx and Bz comparable. Assuming

only small perturbation in the density, the X tensor and
matrix coefficients simplify todvDt

Dx
5

qDt2

4mDx
(I 1 R)E ! 1. (3.1)

4fXii 5
(gpDt)2

4
[1 1 (1 2 u2 1 2u2

i )/(1 1 u2)]
The evaluation of Eq. (2.5) at x̃ further restricts the pre-
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4fXij 5
(gpDt)2

4
[2(uiuy 1 uj)/(1 1 u2)]

diagonal term P
4

D2 (1 1 Xxx)

nine-point template
side terms P

1
D2 (1 1 Xxx)

nine-point template
corner terms P

1
4D2 (Xxz 1 Xzx). (3.4)

Now split the matrix into two parts so A 5 M 1 C. Let
M contain the five-point template, and C contain the corner
coefficients of the nine-point template. Factoring the vari-
ables from M and C, the matrices take the form

FIG. 1. Maximum gceDt to guarantee nonsingular matrix for the im-M 5
1 1 Xxx

D2 1
24 1 0 0 . . .

1 24 1 0 . . .

0 1 24 1 . . .

0 0 1 24 . . .
.
.
.

.

.

.
.
.
.

.

.

. .
.
.

2 plicit electrostatic field equation. This is a sufficient but not necessary con-
dition.

sized problems. Figure 1 shows the results for an n 3 n5
1 1 Xxx

D2 M̃ (3.5)
grid. Large enough grids might eventually impose a more
restrictive constraint than that needed to resolve cyclotron

C 5
Xxz 1 Xzx

4D2 Ssparse matrix
of ones D5

Xxz 1 Xxz

4D2 C̃; (3.6) oscillations. While violating the constraint will not neces-
sarily result in a singular matrix, meeting the constraint
does guarantee a nonsingular matrix.

thus
C. Effect of the Darwin Method

Linear theory gives the dispersion characteristics of the
iM21Ci 5

Xxz 1 Xzx

4(1 1 Xxx)
iM̃21C̃i. (3.7) Darwin limit in plasma. As expected longitudinal waves,

such as plasma oscillations, are unaffected. However, the
absence of the solenoidal part of the displacement current

The assumption gpeDt @ 1 leads to the most restrictive does have major consequences for transverse waves. Fast
constraint. In addition for all components of u approxi- waves (those with phase velocities larger than c) are non-
mately the same and a 5 iM̃21C̃i, the matrix is nonsingu- propagating. For example in a Darwin plasma with no
lar if imposed fields the dispersion relation for transverse waves

is 2c2k2 5 g2
pe(1 1 Zme/mi). This results in imaginary k

or spatially damped fields. The magnitude of the effectu2 1 u

2(1 1 u2)
a , 1. (3.8) on slow waves depends on the plasma characteristics. As

discussed by Kaufman and Rostler [11], in a magnetized
plasma (ck/g)2

Darwin p (ck/g)2
Maxwell 2 1. So Darwin is best

Solving for u, the constraint on Dt is used for those phenomena where transverse wave veloci-
ties as well as particle velocities are significantly less than
the speed of light.

gceDt ,
2a 1 Ïa2 1 8(a 2 2)

a 2 2
. (3.9) A constraint on time step occurs for the numerical Dar-

win plasma with an imposed B-field. This can be seen in
the dispersion relation for a neutral, magnetized plasma
in which we neglect electrostatic fields and follow the fluidThe norm iM̃21C̃i was solved numerically for different
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is larger than one which indicates instability. However,
even in the worst case when ck/gpe Q 1, izi 5 1.0002 for
gceDt 5 0.4. For applications without large, imposed B-
fields gceDt is usually much less than 0.4, and the number
of time steps before this instability grows significantly is
more than required by the simulation. This analysis is also
overly conservative for those cases where there is no static
imposed field. See Section IV for further discussion of our
experience with simulations having imposed B-fields.

D. Electrostatic and Electromagnetic Field Fluctuations

While the above constraints for resolving low frequency
phenomena are met, the high frequency plasma oscillations
which cause the unavoidable fluctuation background in the
plasma are probably not resolved. Most studies of the
numerical dispersion effects of the implicit method have
concentrated on the electrostatic field. Since the electro-
magnetic fluctuation fields are much smaller than the elec-
trostatic fluctuations fields, the numerical effects of the
EM fluctuation fields should be relatively small. In Section
IV the validity of this assumption is investigated.

The change in the total kinetic energy density of theFIG. 2. Magnitude of the least damped mode versus gceDt from the
linear analysis of the Darwin field equation and finite difference equations plasma particle distribution is
of motion in a constant B-field.

dkK El
dt

5 no E dx E dv
f
t

1
2

mv2. (3.14)
motion of the numerical plasma. A B-field is applied in
the z direction, and we will consider spatial variation only
in z. The linearized finite difference Eqs. (2.1), (2.10), and For the continuum plasma a Maxwellian distribution is an
(2.9) become equilibrium (i.e., Eq. (3.14) gives zero). It has been known

for some time and quantified with computations that the
uniform, Maxwellian PIC plasma does suffer a continuous

Vn11/2 5 Vn21/2 1
Dtq
m SEn 1

Vn11/2 1 Vn21/2

2c
3 BoẑD (3.10) change in energy [13]. Langdon used kinetic theory to

find the terms in the Fokker–Planck equation to give a
functional form for the electrostatic PIC plasma dkK El/Vn11 5 Vn11/2 1

Dtq
2m SEn 1

Vn11 1 Vn11/2

2c
3 BoẑD (3.11)

dt [14]. The function is directly proportional to the number
of actual particles per simulation particle, No/Np , and has
arguments of Dx/lD and gpDt or2(k2 1 g2

pe/c2)En11 5
g2

pe

c3 Vn11 3 Boẑ. (3.12)

Splitting these into components for Vx and Vy , results in six dkK El
dt

5 no
No

Np
G(Dx/lD , gpDt). (3.15)

equations and eight unknowns. Assuming time harmonic
variation, z 5 exp(2igDt), for all quantities, the system can
be reduced to two equations and two unknowns. Setting It is shown that explicit methods would cause only heating
the determinant of the 2 3 2 matrix to zero gives the of the plasma while implicit methods could also cause cool-
dispersion relation ing for some Dx and Dt [15]. In DADIPIC there is a cou-

pling of an implicit electrostatic field solution with an ex-
l2(1 1 a2)(1 1 4a2)z4 2 2 plicit magneto-inductive field solution. From Eq. (3.15)

[l2(1 1 a2)(1 2 4a2) 1 18la2]z3 one can see that a set of simulations of uniform plasma at
1 [l2(1 1 a2(1 1 4a2) 1 8la2(1 2 2a2) 1 36a2]z2 different Dx/lD and gpDt with No/Np constant would give

a contour plot of G. The energy change in any simulation2 4a2[l(1 1 4a2) 1 6]z 1 4a2(1 1 4a2) 5 0 (3.13)
could then be found from no and No/Np of that particular
simulation. The plot should also hold for nonuniform plas-where a 5 gceDt/4 and l 5 1 1 (ck/gpe)2. The magnitude

of z versus gceDt is plotted in Fig. 2 for various ck/gpe . izi mas with electromagnetic phenomena other than fluctua-
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tions as long as the other phenomena are well resolved
spatially and temporally.

IV. CHARACTERIZATION OF DADIPIC WITH
DOUBLY PERIODIC TEST CASES

Several test cases follow which characterize the accuracy
and robustness of DADIPIC under circumstances that are
increasingly stressful to the algorithm. The simulations are
doubly periodic to investigate the core algorithm without
the effects of boundaries. We begin with a uniform, Max-
wellian plasma to determine the numerical effects on what
should be an equilibrium situation. The plasma is magne-
tized to check the applicability of the Darwin dispersion
results. Finally, the reaction of the algorithm to large den-
sity gradients coupled with an electromagnetic instability
is tested.

A. Uniform Plasma: Change in Energy due
to Fluctuations

1. Simulation Parameters and Timings

Here we present the results of a set of simulations as
suggested in Section III to find the form of the function in
Eq. (3.15) for the change in kinetic energy of the DADIPIC
plasma due to fluctuations. A set of 28 simulations with
32 3 32 cells were initialized with 30,000 particles each of
electrons and protons at a density of 108cm23. The size of FIG. 3. Time histories of particle and field energies for a doubly

periodic, uniform plasma DADIPIC simulation with Dx/lDe 5 10. andthe problem was set at 1 cm2. The plasma temperature
gpeDt 5 5.: (a) total system energy; (b) Eirr field energy; (c) Esol field(Te 5 Ti) and time step were varied to get desired values
energy, and (d) B-field energy. All are normalized to the initial totalfor Dx/lDE and gpeDt ranging from 0.2 to 20.
system energy Eo . Notice the much smaller magnitude of the electromag-

Figure 3 is a set of typical time histories for the particle netic field energies compared to the electrostatic field energy.
and field energies. Notice that the initial relaxation of the
field energy occurs quickly in the first few time steps, fol-
lowed by a general trend of heating or cooling. In the
simulations the field energy represented only a small frac- duces short wavelength fields by 1/(1 1 (gpeDt)2/2), and

to the damping of high frequency oscillations caused bytion of the total energy, and the ions showed almost no
change from their initial kinetic energy. For all practical the implicit time advance.

As expected the energy in the electromagnetic fields ispurposes the change in energy was due to the change in
the thermal energy of the electrons in the x and z directions. much smaller than the electrostatic field energy. Linear

kinetic theory predicts the electromagnetic fluctuation fieldIn these 2D simulations there is no electrostatic field in
the y direction, and the fluctuation electromagnetic fields energy to be on the order of v2/c2 the electrostatic field

energy [12]. For the DADIPIC plasma it is even less. Forhad no perceptible impact on the particle kinetic energy
in the y direction. small Dt as we go from Dx/lDe 5 0.2 to 20, E2

sol/E2
irr p 10210

to 10214, and B2/E2
irr p 1025 to 1028. As the time step isSeveral trends in the field and particle energies occur.

As Dx/lDe is increased the ratio of electrostatic field energy increased E2
sol does not decrease as fast as E2

irr , and B2

remains essentially constant. For large enough gpeDt theto particle energy increases from 2 3 1024 to 0.044. This
is due to the grid aliasing of wavelengths which causes the B-field energy may even overtake the electrostatic field

energy.spectral density to be larger at short wavelengths than in
a real plasma [15]. As gpeDt increases the electrostatic field These simulations also provide a standard for algorithm

timings. The code was run on the c machine (Cray 2)energy decreases. For Dx/lDe 5 20 the electrostatic field
energy decreases by a factor of 2500 as we go from mini- at the National Energy Research Supercomputer Center

(NERSC). For the given simulation parameters a time stepmum to maximum Dt. The reduction is due to the smooth-
ing caused by simplified differencing which effectively re- takes p3.2 s. The portion of the time taken to complete
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fully electrodynamic, explicit PIC code. For an explicit
code we can assume that solving for the fields would take
negligible time. Because of the direct implicit particle ad-
vance, DADIPIC effectively has two particle pushes. So
an explicit code would take half the time for particle opera-
tions. Thus we can expect that an explicit code would
complete a time step five times faster than DADIPIC for
a similar sized simulation. Of course, DADIPIC can run
with much larger time steps and grid size than an explicit
code. As a typical example consider a DADIPIC simula-
tion with Dx/lDe 5 30 and gpeDt 5 10. With an explicit
code we would typically run with Dx/lDe 5 gpeDt 5 0.2.
So DADIPIC would be able to run (30/0.2) 3 (30/0.2) 3
(10/0.2)/5 5 225,000 times faster for a 2D simulation with
the same number of particles per cell as an explicit code.
This neglects the huge expense in memory due to the factor
of 22,500 more particles in the explicit simulation.

2. Plot of the Numerical Change in Energy

The contour plot of Fig. 4 shows the change in energy
in the form DE/EoN, where DE is the change in the total
energy over the simulation, Eo is the initial energy in fields

FIG. 4. Contour plot of DE/EoN in Dx/lDe and gpeDt space. The dots and particles, and N is the number of time steps in the
are the locations of the simulations run to generate the contours. The

simulation. Table I has the results of the simulations whichupper left hand region and the region near vthDt/Dx 5 1 show heating.
were interpolated to form the contour plot. The generalThe region between with the dashed contours lines has cooling. Simula-

tions were not run in the region where vthDt/Dx . 1. trend is heating for large Dx due to the interpolation of
the grid force [15] and cooling for large Dt due to the
implicit electrostatic field solution. Simulations with and
without the electromagnetic fields gave indistinguishablethe various components of a time step is 42% for particle

operations, 25% for solution of the SDF equations, and results for heating which is consistent with the relatively
small magnitude of the electromagnetic fields. These re-32% for solution of the implicit electrostatic field equation.

Of course, these results serve as typical examples. For sults provide proof that the 2D Darwin, direct implicit
combination does not lead to unexpected or unacceptableother simulations the time for particle operations should

simply scale with the number of particles, but different numerical heating or cooling. In fact, they are similar to
Cohen et al. [16], where the 1D electrostatic direct implicitboundary conditions and grid sizes effect the convergence

of the DADI and biconjugate gradient routines. The solu- D1 scheme was investigated. This is encouraging given that
DADIPIC is a 2D electromagnetic scheme.tion of the fields may take a larger or smaller proportion

of the run time as the simulation is changed. A difference between our results and theirs occurs in
the region where Dx/lDe 5 gpeDt. We believe the differ-These results can be used to compare DADIPIC to a

TABLE I

Change in Energy DE/EoN in Dx/lDe , gpeDt Parameter Space

gpeDt

0.2 0.5 1.0 2.0 5.0 10.0 20.0

20.0 2.2e-3 3.5e-3 3.3e-3 2.1e-3 2.7e-4 22.0e-4 1.0e-3Dx
lDe 10.0 4.8e-4 8.0e-4 8.0e-4 3.3e-4 22.3e-4 6.5e-4

5.0 1.0e-4 1.7e-4 8.5e-5 21.4e-4 3.3e-4
2.0 3.0e-6 22.4e-5 21.3e-4 24.5e-5
1.0 22.6e-6 23.2e-5 25.9e-5
0.5 23.2e-6 21.7e-5
0.2 21.7e-6
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ences are the result of the type of simulations performed.
Cohen et al. simulated periodic expanding plasma slabs
and always observed cooling in the Dx/lDe 5 gpeDt region
while in our uniform plasma simulations heating occurs in
this region. The difference is in the initial state of the
expanding slab with a step function in density. As shown
in several sources [17] even for cases where the implicit
solution eventually results in a net gain in total system
energy, the behavior at early time is a decrease in total
system energy. This is due to the effect of the implicit
particle push on the spatially and temporally unresolved
initial expansion of the slab. It the slab had been started
with a slight slope to its sides the expansion would have
been resolved and only the fluctuations in the densest part
of the plasma would affect the change in total energy. The
return of heating as vthDt/Dx Q 1 is due to the breakdown
of the predictor–corrector solution for the electrostatic
field. That solution depended on an expansion which is
accurate only when particles move less than a cell in a
time step.

As was stated in Section III our intent is only to quantify
the impact of fluctuations assuming the other phenomena
of interest are well resolved. With this qualification in
mind, the contour plot can be used for any simulation by
adjusting for the particle density, np 5 30,000 cm23, and
plasma density, no 5 108 cm23, used here. The plot shows
two contours where energy is conserved. Note the upper
contour is a stable equilibrium. Plasmas with Dx/lDe below
the contour will cool and move up to the contour. However,
plasmas in the heating region to the right will continue to FIG. 5. Particle velocity distributions vs v/vth resulting for different
heat and reach the point where vthDt/Dx . 1. It is therefore values of gpeDt: (a) in the first heating region, where 3vthDt/Dx Q 1; (b)
advisable to run in the region, where 3vthDt/Dx Q 1 in the along the energy conserving contour, where 3vthDt/Dx Q 1; (c) in the

cooling region; (d) in the second heating region where vthDt/Dx 5 1; anddensest part of the plasma. Parts of the plasma with lower
(e) in the direction out of the simulation plane.densities will be at a point of smaller Dx/lDe and gpeDt

where energy is even better conserved.
Figure 5 has the final particle velocity distribution (dots)

compared to the initial Maxwellian (dashed line) and a the final distribution is not much different than the initial
distribution. We have seen more pronounced changes forMaxwellian at the calculated temperature of the plasma

at the end of the simulation (solid line) from several of 1D simulations with a larger grid that were run for more
time steps. A decrease in the tails and center of the distribu-the simulations used to generate the energy conservation

contour plot. In all of these cases Dx/lDe is 10. The se- tion balanced by a bulging near the thermal velocity is
observed. This indicates that faster particles are beingquence of the plots is for increasing time step showing

the effect of the first heating region (Fig. 5a), the energy cooled by the implicit advance while the slower particles
are still heating due to the grid force. In the cooling regionconserving contour (Fig. 5b), the cooling region (Fig. 5c),

and the second heating region (Fig. 5d). Figure 5e gives again the distribution remains essentially Maxwellian as
the whole distribution cools due to the implicit particlethe distribution in the direction out of the simulation plane.

Figure 5e provides computational evidence that there is advance. The only distribution which deviates substantially
from a Maxwellian is that from the second heating region.no change in the distribution in the direction which has

no Eirr indicating no other significant numerical heating or Here the slower particles appear to remain near the initial
distribution, but the faster particles heat dramatically. Thecooling mechanisms at work.

In the first heating region the particle distribution is heating appears to occur for those particles with speeds of
vth and above. In this region these are particles which aremostly Maxwellian except at the largest velocities where

the faster electrons appear somewhat cooled by the implicit moving more than one cell in a time step. These results
indicate that it is possible to use DADIPIC with largeparticle advance. Along the energy conserving contour
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TABLE II C. Large Density Gradients: Electron
Beam FilamentationReal, g, and Imaginary, c, Parts of the Frequency from the

Darwin Dispersion Relation in a Constant B-Field Electron beam filamentation serves as the final doubly
periodic test case for DADIPIC. In these tests densitygceDt Analytic gDt PIC gDt Analytic cDt PIC cDt
gradients, electrostatic fields, and electromagnetic fields

0.8 0.617 0.61 0.00244 0.0021 are all significant. Consider a neutral plasma column
1.2 0.889 0.88 0.00965 0.0097 aligned along the y axis with electrons flowing in the col-
1.6 1.13 1.1 0.0227 0.021 umn. The electrons have two components uniformly dis-

tributed across the column, a dense target, T, flowing in
the negative y direction and a faster beam, B, flowing
in the positive y direction. This results in a Weibel-typetemporal and spatial discretization while not causing large
electromagnetic instability in which the electron compo-numerical affects to the particle velocity distribution. How-
nents breakup into filaments [18]. For the case where theever, the constraint of a relationship between Dt and Dx
total momentum in the system is zero and the electronmust be met.
components are at the same temperature the dispersion
relation is [19]B. Uniform Plasma: Imposed Magnetic Field

As shown in Section III, the implementation of the Dar-
(g2 2 k2v2

the)(g2 2 g2
pe 2 c2k2)

(4.1)win method results in a scheme which is slightly unstable
2 k2(g2

pTu2
oT 1 g2

pBu2
oB) 5 0.even at small Dt. In a previous paper [1] we investigated the

ability of DADIPIC to reproduce linear electron cyclotron
waves in magnetized plasma. We found that DADIPIC A purely imaginary root to this equation, indicating growth
results agreed with analytic results for both the oscillation of an instability, results when
frequency and damping of these waves. In these simula-
tions gceDt was kept at less than 0.4, and no adverse numeri-
cal instability effects were apparent. In addition, no prob-
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lems with solution of the electrostatic field equation matrix
were encountered on 32 3 32 grids. Here the effects of
the numerical instability are quantified in simulations to So for any particular initial conditions the instability will

only grow for certain wavelengths. As the transverse tem-gauge the applicability of the linear theory result of Section
III for the actual code. perature increases, progressively longer wavelengths will

become stable.We ran a series of 1D periodic simulations with Dx/
lDe 5 10 and gpeDt 5 3.1, parameters which minimized Two simulations were initialized to investigate this insta-

bility. The first was a uniform, doubly periodic plasmanumerical effects from the direct implicit scheme. The
length of the simulations was 167 cm with 64 grid nodes. where the size of the simulation region sets the longest

wavelength. This allows the electromagnetic instability toThe plasma density of 1 3 108 cm23 gave ckmax/gpe 5 2,
where kmax corresponds to the longest wavelength in the grow with minimal electrostatic effects. The second was a

finite size column which could expand during the simula-system. Larger wavenumbers are available, but as shown
by Fig. 2 oscillations at such wavenumbers are less unstable. tion. Here nonuniformity, electromagnetic, and electro-

static effects were significant at the same time. The parame-If the theoretical dispersion relation applies, only the lon-
gest wavelength in the system should grow noticeably. The ters for these runs are 32 3 32 grid, gpeDt 5 10, Dx/lDe 5

48, length of problem 395 cm, 30,000 particles of eachsimulations were run long enough to show a significant
increase in the magnitude of the unstable mode (at least species, ion density of 108 cm23, and 160 time steps. In

these simulations the initial temperature was chosen toa factor of 20), the growth rate was calculated from an
exponential curve fit to the B-field energy time history. allow the heating due to the filamentation to increase lDe

and bring Dx/lDe to the energy conservation contour. TheThe results are shown in Table II. The DADIPIC results
agree with the linear theory to within a few percentages for electron densities and velocities normalized to the ion den-

sity and the speed of light respectively are shown in Tableboth the oscillation frequency and growth of the instability
indicating the reliability of the linear theory for predicting III. Since the streaming velocities are in the y direction

where there is no electrostatic field, the electrostatic two-the effects of this instability. The dispersion relation can
be used to set the time step with the goal of keeping the stream instability will not occur. This significantly simplifies

the interactions to be observed.effect of the numerical instability small given the size of
the system, the magnitude of the B-field, and the plasma Figure 6 shows the B-field energy and particle energy

for the uniform plasma and finite beam problems. Thefrequency.
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TABLE III
Species Parameters for Filamentation Simulations

Beam electrons Target electrons Ions

Density 1/11 10/11 1
vdrift/c 0.05 0.005 0
vth/c 0.005 0.005 1.2 3 1024

beam energy (KEi) is converted into field energy and
perpendicular thermal energy as the instability grows. Note
that KE' does not grow as much in the finite beam case
since not as large a vth is required to move the stable point
to k less than kmin . The growth rate can be found quite
easily from the slope of the initially linear increasing B-
field energy on the log plots. The variation of linear theory
grow rate with wavenumber is shown in Fig. 7. The hori-
zontal lines in the figure are the results from simulation.
The simulation results have been cut off at the maximum
wavelengths attainable corresponding to the width of the
simulation in the uniform plasma case and the width of

FIG. 7. Beam filamentation growth rates. The solid curve is the theo-
retical dispersion curve. The large dashed line (uniform plasma) and
small dashed line (finite beam) show the grow rates observed in DADIPIC
simulations. The lines extend to the minimum wavenumbers available in
the simulations.

the beam in the finite beam case. In both cases the size of
Dx was set so that the shorter wavelengths available in
the simulations would be stable. In the simulations the
instability should grow at the largest rate within the band
of available wavelengths. Considering the largest available
linear theory growth rate, we see a variation of Q10% from
the simulation results (cPIC 5 0.01gpe vs ctheory 5 0.0095gpe

for the finite beam case).
The fastest growing mode for the finite beam is also the

longest wavelength which can fit within the beam width
and the last mode to stabilize. The longest wavelength
mode is thus the only mode to grow to perceptible size as
shown in the particle plots of the beam and target electrons
in Fig. 8, where the beam electrons have coalesced into a
single filament. The uniform plasma, on the other hand,
is wide enough to allow longer wavelength modes to con-
tinue to grow after the fastest mode has stabilized. This is
evidenced by the second spurt of growth in the B-field
energy. Figure 9 illustrates the change in mode with B-
field plots at early and late time. At early time the fastest
growing mode with ck/gpe 5 1.5 dominates while at late
time the mode saturates at the longest wavelength
available.

Finally, there is the question of whether any changes inFIG. 6. Beam filamentation B-field and particle energies showing the
energy due to numerical effects are important. Figure 10exponential increase of the B-field during growth of the instability; (a)

the uniform plasma and (b) the finite beam. has the time histories of the total energy for the two simula-
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FIG. 9. Beam filamentation B-field plots for the uniform plasma
showing a change in the unstable mode. (a) At early time, gpeDt 5

320, a shorter wavelength has the fastest growth rate (longest vector 5

.0531 gauss). (b) At late time, gpeDt 5 1600, the initial mode stabilizes
FIG. 8. Beam filamentation electron particle plots for the finite and the slower growing longest wavelength mode dominates (longest

beam: (a) beam electrons and (b) target electrons. These are snaphots vector 5 0.356 gauss).
at gpeDt 5 1600 after saturation of the instability, where the beam elec-
trons have coalesced into one filament.

shown by the excellent agreement with theory of the
growth rates and mode wavelengths, any numerical effects

tions. In the uniform case the electrons are heated in the did not adversely affect the final results.
perpendicular direction by the instability. In the finite These results may be compared to the fully electromag-
beam case the electrons are heated by the instability and netic, implicit code AVANTI which Hewett and Langdon
cooled by the plasma column expansion. In both cases the [5] test with the same beam filamentation phenomena. For
change in temperature causes a change in Dx/lDe in the similar simulation particle numbers, grid sizes, and vthDt/
plnae of the electrostatic field. In addition to the heating Dx, DADIPIC appears to achieve better results. The
effects, the B-fields have grown to significant size by the change in energy for the AVANTI simulations was p20%,
end of the simulations. We reach magnitudes where a factor of 10 larger than the DADIPIC simulations. The
gceDt 5 0.1 and the off-diagonal terms in the implicit sus- growth rates, compared to analytic theory, were at best
ceptibility tensor are 5% of the diagonal terms. However, within a factor of two as opposed to the p10% for
in both cases the initial choice of Dx/lDe allowed the plas- DADIPIC. Results, such as these, along with the field
mas to remain near enough to the energy conservation solution and boundary condition concerns detailed in our
contour to cause negligible change in the total energy previous paper [1], have convinced us to pursue DADIPIC
(p2%) compared to the 60% change in the target electron for low frequency plasma simulation.
thermal energy and 730% change in the beam electron
thermal energy (uniform case). This results in vthDt/Dx 5 V. DADIPIC MODE OF OPERATION
3.8 and 1.8 at the end of the simulation for the target
and beam electrons, respectively. Remember the energy The theory of Section III and its verification in Section

IV lead u to some general guidelines to ensure stable andconservation contour is approximately vthDt/Dx 5 3. As
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FIG. 11. Recommended operating region (shaded) for DADIPIC in
the Dx/lDe versus gpeDt plane. The width of the region depends on the
tolerable numerical effect on electron kinetic energy. The region can
extend to Dx/lDe and gpeDt @ 1.

FIG. 10. Beam filamentation total system energy. Even with the large The bounding lines around the energy conserving contourchanges in Te changes in the total system energy are 2% or less.
are set by the condition of Eq. (5.1). The simulation is run
where the bar for the change in Dx/lDe fits between the
allowed limits due to numerical changes in energy.accurate DADIPIC simulation. These guidelines combine

With this method two different types of situations canto give a region of operation in Dx/lDe versus gpeDt space
be simulated. The first is equilibrium phenomena, whereas shown in Fig. 11. In order to resolve the phenomenon
Te remains basically unchanged (i.e., Section IV.A). Large,of interest we are constrained by kDx , 1 and goDt , 0.2.
but nearly balanced, fluxes of energy into and out of theThe cyclotron instability requires gceDt , 0.4 which may
system are still possible. In this case the spatial and tempo-be more or less stringent a constraint than the requirement
ral discretization is set so the simulation resides on theto resolve the low frequency phenomenon. We must stay
energy conserving contour and the phenomenon of interestnear the line 3vthDx/Dt 5 1 to prevent numerical heating
is resolved. Systems where the plasma temperature isas well as ensure accuracy of the implicit field equation
changing can be handled by initializing the simulation soand particle accelerations. The width of the allowed region
that the energy-conserving contour is crossed minimizingaround the energy conserving contour depends on the
numerical heating/cooling effects (i.e., Section IV.C).amount of numerical heating which we can tolerate. Essen-

There are two schemes which may further minimize nu-tially we want to meet the condition
merical heating/cooling and further increases the width

DK Enumerical/DK Ephenomena ! 1. (5.1) of the simulation region. The time step could be varied
dynamically during a simulation in order to stay near the

In any particular simulation the change in the total kinetic energy conserving contour. An alternative is to implement
energy due to the phenomena can be estimated. As the a df scheme [20] to minimize the electrostatic fluctuations
temperature of the plasma changes during a simulation the which are the cause of the numerical change in kinetic
ratio Dx/lDe changes as represented by the vertical bar energy.
in Fig. 11. The numerical effect on the kinetic energy is
given by VI. CONCLUSION

In this paper we have investigated the performance ofDK Enumerical 5 E DE
EoN SDx

lDe
(t)D dt. (5.2)

the Darwin direct implicit particle-in-cell (DADIPIC)
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